
December 1979 / Vol. 4, No. 12 / OPTICS LETTERS 403

Calculation of fluence-dependent dissociation probabilities in
infrared multiple-photon photolysis
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Exact analytical expressions are derived for the expected dissociation yield in bulk infrared photolysis experiments;
these results are based on a power-law fluence-dependent model of infrared multiple-photon dissociation as ap-
plied to the interaction of a focused, Gaussian-profiled pulsed laser with a medium.

In recent years infrared multiple-photon dissociation
(MPD) has been extensively studied from both funda-
mental scientific and applications-oriented vantage
points. The dissociation probability has been found to
be a sensitive function of the laser fluence in regimes
between threshold and saturation. An accurate
quantitative characterization of this fluence dependence
based on experimental observations is quite important
and is particularly essential in assessing possible ap-
plications of MPD. Although some research on the
relation of the observed bulk-reaction yield to laser
fluence (or intensity) has been reported, such as the
explanation of the 3/2 power law for MPD in tightly
focused geometries,1 formulas relating observed yields
to a general fluence-dependent dissociation probability
and beam geometry are apparently not available. This
Letter derives these general equations.

Consider a laser that propagates centrally and axially
through a cylindrical cell of length 1 and radius R and
that is focused in the center of the cell. The transverse
profile is taken to be Gaussian with (electric-field)
confocal radius co, so the radial dependence of the
fluence, 0, is given by

0(r,z) = 0(O,z)exp[-2r 2 /co2 (z)], (1)

where r and z are the radial and longitudinal coordi-
nates, respectively, which are measured from the center
of the cell. 0(O,z) is readily related to the laser-pulse
energy, E, and the beam parameters:

2E
00°Z) = 2( * (2)7Tw2(Z )

The expression for the beam radius for a focused
Gaussian-profiled laser is given by

W2 (z) = w0
2 [ + (2>2)2]= o2 1+()2 1

where coo is the radius at the focus (z = 0), X is the
wavelength, and a equals the conventional Rayleigh
range (a = wrwo2/X). Any deviation from diffraction-
limited behavior may be incorporated into Eq. (3) by
suitably decreasing a.

Two empirical (and widely employed) models for the
fluence dependence of the dissociation probability,
P(s), are considered:

(Model I) P(q) =p ( :J)

m = integer

(Model II) P(0) = 0

q5 < 0sat

¢k > 'ksat;

(k < ¢crit

' > ¢0crit-

(4a)

(4b)

(5a)

(5b)

An integral power-law dependence is assumed in the
first case; the dissociation probability saturates at p for
fluences above 'ksat. The second case is actually a spe-
cial case of Model I with m -- and Cksat - crit (which
is the critical or threshold fluence). The predictions of
the expected yield based on this simple model are easily
derived from the yield equations obtained assuming
Model I. The maximum dissociation probability at
high fluences is p (O < p < 1) in both cases. Under
many conditions p is nearly unity; however, in the MPD
of small molecules p may be much less than 1 because
of rotational-level bottlenecking.2

The experimental-dissociation yield may be ex-
pressed in terms of an effective volume, Veff, which is
defined as the product of the observed fractional yield
per pulse and the cell volume. Veff may also be ex-
pressed in terms of P(0) (Model I):

Veff = 2 1/2 2 7r JR P(O)rdrdOdz, (6)

where 0 is the cylindrical angular coordinate.
Veff may be obtained by first calculating the effective

cross-sectional area, Aeff, which includes only the inner
two integrations of Eq. (6):

R
Aeff = 27r P(O)rdr (7a)

and
1/2

Veff = 2 fo Aeffdz, (7b)

where cylindrical symmetry has just been invoked.
For the moment, assume that 0(O,z) > Osat. If rsat is

that radius at which 0 = Osat, then within this radius P
= p; rsat is determined from Eqs. (1) and (2):
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rsat 2 = ( I) ln [2( (8)

Therefore, in a circular section in which 0(0,z) 2 La5t,
rR

Aeff = 7rsat 2p + 27r fR P(q)rdr

= 7rrsat 2 p + 7r W2 Z)
2m

(9a)

(9b)

where the last form is obtained from Eqs. (1), (4a), and
(8); it is assumed that the laser fluence is vanishingly
small at the cell radius. However, if 0(0,z) < Osat, then
Eq. (9a) is utilized with rsat = 0:

Aef= O2 (z)p 2E 1

Aeff = -2m [w2(z)'ksat . (10)

If Y is defined as the longitudinal coordinate at which
0 (0,z) = 'ksat, then Eq. (9b) is valid for Iz I < Y, whereas
Eq. (10) is correct for Iz I > Y. Y may be expressed as

a= (a77- 1 )12 (11)

with

2E
77 2 . (12)

7rWO2 Osat

71 is the ratio of the peak fluence at the focus to the sat-
uration fluence. If 77 < 1, then Y is taken to be 0,
whereas if Y > 1/2 it is set equal to 1/2.

These expressions for Aeff are now substituted into
Eq. (7b):

Veff = 2p j' [7rrsat2 + 7r L2mZ) dz

_ _ _ _ 2 E l+ 2p J 1/2 71r1D2(z) W 2E (s dz (13a)

= fa(0-1)1/2 {WLO2 1 + (Z) n 1 +1

+ 72 ° 1 + (Z) 2 dz
\a )

2_ _ Z 2]+ 1/2 Wo2 [ 1+ (zI2 | dz.

(13b)
Equation (13b) is derived from Eq. (13a) using Eqs. (3),
(8), (11), and (12). For an unfocused beam, Veff equals
lAe,,, where the appropriate form of Aeff is employed
[either Eq. (9b) or Eq. (10)] and the actual beam waist,
Wo, is substituted for c.(z); in this special case, the result
will agree with that obtained by using the prescription
for averaging functions over Gaussian beams presented
by Kolodner et al. 3

Equation (13b) involves standard integrals, which are
straightforwardly evaluated, leading to (for m > 2)

Veff = 7rWCo2 ap 4m + 3 - 1)1/2 + 2m + 3 - 1)3/2

-4 arctan(- - 1)1/2
3

+ Em [ X m-2 1 (2m - 3)!!
m [2m - k=l 2k (2m - 2k - 3)!!

X (m - k-2)! 1
(m - 2)! (1 + X2)m-h-1

+ (2m - 5)!! arctan 1x /2a 1)1/21 (14)

If ij < 1, then each (a7 - 1) is replaced by zero. The
mr-independent portions of the first three terms in the
curly brackets are derived from the 7rsat 2 expression in
Eq. (13a), whereas the r-dependent parts of the first
two terms come from the 7rco2 (z)/(2m) expression in the
same equation. These three cited terms are absent if
71 < 1. The last term comes from the 1/2 > z > Y inte-
gration in Eq. (13a). The appropriate values of 'ksat, m,
and p in the Eq. (4) probability function can now be
determined, for example graphically, by using Eq. (14).
The first two parameters affect the shape of the Veff
versus 0 plot, whereas the last variable is only an overall
multiplying factor.

It is clear from Eq. (14) that in the weak laser limit (7
<< 1) the observed yield obeys the same power-law de-
pendence as does P(o), whereas, in the tightly focused
geometry, highly saturated regime (77 >> 1), the 3/2 power
law can dominate. Speiser and Jortner1 have reached
similar conclusions for non-Gaussian beams.

The expression for Veff for the special case of m = 3
will be presented here because a cubic fluence depen-
dence has been observed in the yield of MPD of several
molecules4 (below saturation) using lasers with rela-
tively flat and decidedly non-Gaussian transverse pro-
files [so Veff('k) behaves like P(0)]:

V` 3 = 7rCo02 ap 5 (i7 - 1)1/2 +- (7 - 1)3/2
eff 3 ~~~~~3

- 4 arctan(77 - 1)1/2
3

+ n6 arctan - -_- arctan (q j- 1)1/2
6 2a 6

773 1/2a 773 (77 - 1)1/2

6 1 + (12 6 1 + [(?7- 1)1/2]2
(15)

Finally, the effective volume for the probability
function assumed in Model II [Eq. (5)] is straightfor-
wardly obtained from Eq. (14) by letting m - :

VNMdel 11 = wco 2ap [- (7 - 1)1/2

+ (71 - 1)3/2 - 4 arctan(77-1)1/2|
9 3

(16)

where now

7 = 2E/(wwo02 crit).

This analysis can be refined in several ways. For
instance, Model I could be altered to allow for a certain
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power-law fluence dependence at fluences near
threshold and a different one at higher fluences (below
Osat); Veff could then be calculated by using the proce-
dures outlined above. In addition, note that Eq. (14)
was derived under the assumption that the density of
absorbing species, N, is small enough for the medium
to be considered optically very thin. For use in as-
sessing possible applications, it can be modified to in-
clude modest absorption (<15% per pass) by first lin-
earizing the Beer's law absorption dependence of the
laser-pulse energy, E(z):

E(z) = E[1 - aN(z + 1/2)], (17)

where E is the input energy at the entrance window (z
= - 1/2) and a is the absorption coefficient, which is
assumed to be fluence independent.5

Using the techniques described above, Eq. (14) is
straightforwardly modified, to first order in aN1, to
yield

Vmod = Ve2ff + Yef (for maN1 << 1), (18)

where V~ff is Veff, as defined in Eq. (14), with the 77m/m
term multiplied by (1 - maNI/2) and all terms with (a7
- 1)1/2 replaced by [(a7 - 1)1]1/2, where

[(71- 1)4i]1/2 = 77 - 1 - i7aNl

+ (-qaNa)21/2 | 77'Na . (19)

71 is still given by Eq. (12). When either [(q-1)±]1/2 or
the term in the (other) square root in Eq. (19) is nega-
tive, [(-q - 1)±]1/2 is set equal to zero; whereas if [(a -
1)+]1/2 > 1/2a it is then set equal to l/2a. Equation (18)
may be further extended to optically thicker media by
suitably modifying Eq. (17) and recalculating Veff (Ref.
6); however, limitations in the assumption of a

fluence-independent absorption coefficient will limit
the accuracy of the results.

The results of MPD experiments on a given molecule
obtained under varying conditions, perhaps in different
laboratories, may now be compared by determining oksat,
m, and p from either Eq. (14) or Eq. (18). Armed with
the values of these parameters for a specific molecule,
the expected yield can be accurately calculated for any
other experiment, as long as the dissociation probability
can be well characterized by Model I.

The author gratefully thanks J. Marling for valuable
discussions regarding this work.
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